DATE OF EXAM: 25.02.2019				Solution
SUBJECT NAME: Analysis II	-	MIDTERM Exam	-	Semester II

1. Let U be an open subset of X, and let $x \in U$. Is $U \setminus \{x\}$ open in X? Justify your answer.

Solution: We claim that $U \setminus \{x\}$ is open in X. Let $y \in U \setminus \{x\}$ be a arbitrary element. It is easy to observe that $y \in U$. Since U is open subset X, then there exits r > 0 such that $B(y,r) \subset U$. We will have two cases, either $x \notin B(y,r)$ or $x \in B(y,r)$. If $x \notin B(y,r)$ then $B(y,r) \subset U \setminus \{x\}$. If $x \in B(y,r)$ then choose $r_0 = \frac{d(y,x)}{2}$, therefore $B(y,r_0) \subset U \setminus \{x\}$. Hence $U \setminus \{x\}$ is an open set.

2. Let $f, g: X \to \mathbb{R}_u$ be continuous functions, and let $C = \{x \in X : f(x) = g(x)\}$. Prove that C is closed.

Solution: Consider a sequence of points $\{x_n\} \in C$ converging to $x \in X$. To prove C is closed, it is enough to prove that $x \in C$. Since $f(x_n) = g(x_n)$ for all n and f, g are continuous, then we have

$$f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = g(x).$$

Therefore $x \in C$. Thus C contains its limit points. Hence C is closed.

3. Prove that a discrete metric space is complete.

Solution: Let $\{x_n\}$ be a Cauchy sequence, then for every $\epsilon > 0$ there exist $n_0 \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ for all $n, m > n_0$. Now take $\epsilon = \frac{1}{2}$, then there exist $n_1 \in \mathbb{N}$ such that $d(x_n, x_m) < \frac{1}{2}$ for all $n, m > n_1$. Since d is discrete metric, we have x_n is a constant for all $n > n_1$. Therefore $\{x_n\}$ converges in discrete metric space.

4. Define $C = \{x \in X : B_r(x) \text{ is uncountable for every } r > 0\}$. Prove that C is a closed set.

Solution: Consider a sequence of points $\{x_n\} \in C$ converging to $x \in X$. To prove C is closed, it is enough to prove that $x \in C$. Since $x_n \to x$, for arbitrary $\epsilon > 0$, $B_{\epsilon}(x)$ contains at least one element of the sequence $\{x_n\}$. Say $x_m \in B_{\epsilon}(x)$, using our assumption, we can find an $r_0 > 0$ such that $B_{r_0}(x_m) \subset B_{\epsilon}(x)$. Since $B_{r_0}(x_m)$ is uncountable, therefore $B_{\epsilon}(x)$ is uncountable. Hence $x \in C$.

5. Let d̃(A, B) = inf{d(a, b) : a ∈ A, b ∈ B} for all A, B ⊂ X. State whether the following statements are ture or false. Justify your answer.
(i) If A ∩ B ≠ Ø, then d̃(A, B) = 0. (ii) If d̃(A, B) = 0, then A ∩ B ≠ Ø. (iii) (P(X), d̃) is a metric space.

Solution: (i). If $A \cap B \neq \emptyset$, then we can find $a \in A \cap B$ such that d(a, a) = 0. This implies that $\tilde{d}(A, B) = 0$. Therefore (i) is true.

(ii). Let A = (0, 1) and B = (1, 2), $\tilde{d}(A, B) = 0$, but $A \cap B = \emptyset$. Therefore (ii) is false. (iii).Let $A, B \in P(X)$, assume that $A \neq B$, but $A \cap B \neq \emptyset$. From (i), we will get $\tilde{d}(A, B) = 0$. Therefore $(P(X), \tilde{d})$ is not a metric space. (iii) is false.

6. Let D be a dense subset of X such that every Cauchy sequence in D converges in X. Prove that X is complete.

Solution: Let $\{x_n\}$ be a Cauchy sequence in X. Since D is dense in X. For each $n \in \mathbb{N}$ there is some y_n such that $d(x_n, y_n) < \frac{1}{n}$. Thus

$$d(y_m, y_n) \le d(y_m, x_m) + d(x_m \cdot x_n) + d(x_n, y_n) < \frac{1}{m} + d(x_m, x_n) + \frac{1}{n}.$$

For every pair of positive integers m and n. Therefore $\{y_n\}$ is also a Cauchy sequence in D. By assumption $\{y_n\}$ converges to $x \in X$.

$$d(x_n, x) \le d(x_n, y_n) + d(y_n, x) < \frac{1}{n} + d(y_n, x).$$

Thus $x_n \to x$. Hence X is complete.

7. Prove that $\mathbb{R}^n_u \setminus \mathbb{Q}^n$, n > 1, is connected.

Solution: We can find the proof in the book 'Topology of Metric Spaces' by S. Kumaresan. Example 5.1.30, Page - 112 to 113.

8. Let X be a countable metric space, and let $\#X \ge 1$. Prove that X is connected if and only if #X = 1

Solution: Assume #X = 1, every metric space with one element is connected. Therefore X is connected. Conversely, assume that X is connected. Suppose X has atleast two elements x_0, x_1 with $x_0 \neq x_1$. Define $f: X \to [0, 1]$ by

$$f(x) = \frac{d(x, x_0)}{d(x, x_0) + d(x, x_1)}$$
 for all $x \in X$

Thus f is continuous and we have $f(x_0) = 0$ and $f(x_1) = 1$. Since X is connected and the continuous image of connected set is connected set is connected. Therefore f(X) = [0, 1], Since [0, 1] is uncountable, implies X is uncountable. This is a contradiction. Therefore #X = 1. \Box

9. Let $f: X \to Y$ be a continuous function, and let

$$Graph(f) = \{(x, f(x)) : x \in X\}.$$

Prove that Graph(f), with respect to the metric inherited from the product metric, is homeomorphic to X.

Solution: Define $F: X \to \operatorname{Graph}(f)$ by F(x) = (x, f(x)). It is easy to verify that F is bijective. Now, $g: X \to X$ defined by g(x) = x is continuous and by assumption f is continuous, implies that F is continuous. $F^{-1}: \operatorname{Graph}(f) \to X$ maps $F^{-1}((x, f(x))) = x$. F^{-1} can be obtained as the restriction of the from $X \times Y$ to X, to the subspace G of $X \times Y$. Since projections are continuous, therefore F^{-1} is continuous.